\(\require{color}\)

自然指數的定義

\begin{align}
e:=&\,\lim_{n\to\infty}\big(1+\frac{1}{n}\big)^{n}\\[2mm]
=&\,\lim_{x\to0}\big(1+x\big)^{\frac{1}{x}}
\end{align}

複習與回顧

上一篇討論重要極限 $\displaystyle\lim_{x\to0}\frac{\sin x}{x}$的幾個延伸題,
這回繼續討論由自然指數定義衍生出來的重要極限,及其相關的極限題。

回顧書中出現的極限

在《白話微積分》中,列出了幾個與 $e$ 相關的重要極限:

  1. $\displaystyle\lim_{n\to\infty}\big(1+\frac{1}{n}\big)^n=e$
  2. $\displaystyle\lim_{n\to\infty}\big(1+\frac{a}{n}\big)^n=e^a$
  3. $\displaystyle\lim_{x\to0}\big(1+x\big)^{\frac{1}{x}}=e$
  4. $\displaystyle\lim_{x\to0}\big(1+ax\big)^{\frac{1}{x}}=e^a$
  5. $\displaystyle\lim_{x\to0}\frac{\ln\big(1+x\big)}{x}=1$
  6. $\displaystyle\lim_{x\to0}\frac{e^x-1}{x}=1$
  7. $\displaystyle\lim_{x\to0}\frac{a^x-1}{x}=\ln a$

回顧前文

也别忘了上篇文章所見過的幾個常用已知極限

  1. $\displaystyle\lim_{x\to0}\frac{\sin ax}{ax}=1$
  2. $\displaystyle\lim_{x\to0}\frac{\tan ax}{ax}=1$
  3. $\displaystyle\lim_{x\to0}\frac{1-\cos x}{x^2}=\frac{1}{2}$

回顧書中例題

\begin{align*}
(1) \quad&\;
\lim_{x\to0}\frac{5^x-3^x}{x}\\[3mm]
=&\,\lim_{x\to0}\frac{\big(5^x-1\big)-\big(3^x-1\big)}{x}\\[3mm]
=&\,\lim_{x\to0}
\frac{5^x-1}{x}-\lim_{x\to0}\frac{3^x-1}{x}\\[3mm]
=&\,\ln5-\ln3=\ln\frac{5}{3}\\[4mm]
(2) \quad&\;
\lim_{x\to0}\big(1+2x\big)^{\frac{1}{\sin(x)}}\\[3mm]
=&\,\lim_{x\to0}\bigg[
\big(1+2x\big)^{\frac{1}{2x}}
\bigg]^{\frac{x}{\sin(x)}\cdot2}
=e^2\\[4mm]
(3) \quad&\;
\lim_{x\to0}
\big(1+x^2\big)^{\cot^2(x)}\\[3mm]
=&\,\lim_{x\to0}\bigg[
\big(1+x^2\big)^{\frac{1}{x^2}}
\bigg]^{x^2\cdot\cot^2(x)}\\[3mm]
=&\,\lim_{x\to0}\bigg[
\big(1+x^2\big)^{\frac{1}{x^2}}
\bigg]^{\frac{x^2}{\sin^2(x)}\cdot\cos^2(x)}\\[3mm]
=&\,e^{(1\cdot1)}=e\\[4mm]
(4) \quad&\;
\lim_{x\to0}
\big(e^x+\sin(x)\big)^{\frac{2}{x}}\\[3mm]
=&\,\lim_{x\to0}e^2\cdot
\Big(1+\frac{\sin(x)}{e^x}
\Big)^{\frac{2}{x}}\\[2mm]
=&\,e^2\cdot\lim_{x\to0}\bigg[
\big(1+\frac{\sin(x)}{e^x}\big)^{\frac{e^x}{\sin(x)}}
\bigg]^{\frac{\sin(x)}{x}
\cdot2\cdot\frac{1}{e^x}}\\[3mm]
=&\,e^2\cdot e^2=e^4\\[4mm]
(5) \quad&\;
\lim_{x\to\infty}
\Big(\frac{x+a}{x-a}\Big)^{x}\\[3mm]
=&\,\lim_{x\to\infty}
\Big(\frac{x-a+2a}{x-a}\Big)^{x}\\[3mm]
=&\,\lim_{x\to\infty}
\Big(1+\frac{2a}{x-a}\Big)^{x-a}
\cdot\Big(1+\frac{2a}{x-a}\Big)^{7a}\\[3mm]
=&\,e^{2a}\cdot1=e^3\;\;
\Rightarrow
a=\frac{3}{2}
\end{align*}

延伸題

延伸題 1

\begin{align*}
\lim_{x\to0}
\big(1+3x\big)^{\frac{2}{\sin x}}
\end{align*}

\begin{align}
&\,\lim_{x\to0}
\big(1+3x\big)^{\frac{2}{\sin x}}\\[2mm]
=&\,\lim_{x\to0}
\bigg[\big(1+3x\big)^{\frac{1}{3x}}
\bigg]^{\frac{2}{\sin x}\times3x}
&&\colorbox{Lavender}{先對齊\(3x\)}\\[2mm]
=&\,\lim_{x\to0}
\bigg[\big(1+3x\big)^{\frac{1}{3x}}
\bigg]^{\frac{x}{\sin x}\times2\times3}
&&\colorbox{Lavender}{再湊\(\frac{\sin x}{x}\)}\\[2mm]
=&\,e^{1\cdot2\cdot3}=e^6
\end{align}

延伸題 2

\begin{align*}
\lim_{x\to0}
\big(1-\sin x\big)^{\frac{x}{\ln(1+3x^2)}}
\end{align*}

看見底是$(1+\colorbox{SkyBlue}{無窮小量})$這種形式,
就想到往 $\displaystyle\lim_{x\to0}(1+x)^{\frac{1}{x}}$去湊

\begin{align}
&\,\lim_{x\to0}
\big(1-\sin x\big)^{\frac{x}{\ln(1+3x^2)}}\\[2mm]
=&\,\lim_{x\to0}
\bigg(\big(1-\sin x\big)^{\frac{1}{\sin x}}
\bigg)^{\sin x\,\cdot\,\frac{x}{\ln(1+3x^2)}}
\\[2mm]
=&\,\lim_{x\to0}
\bigg(\big(1-\sin x\big)^{\frac{1}{\sin x}
}\bigg)^{\frac{\sin x}{x}\cdot\frac{3x^2}{\ln(1+3x^3)}
\cdot\frac{1}{3}}\\[2mm]
=&\,\big(e^{-1}\big)^{1\cdot1\cdot\frac{1}{3}}
=e^{-\frac{1}{3}}
\end{align}

延伸題 3

\begin{align*}
\lim_{x\to0}
\frac{x\ln(1+x)}{1-\cos x}
\end{align*}

透過觀察題目,不難聯想到這兩已知極限:

\begin{align}
&\,\lim_{x\to0}\frac{1-\cos x}{x^2}=\frac{1}{2} \\[3mm]
=&\,\lim_{x\to0}\frac{\ln(1+x)}{x}=1
\end{align}

所以

\begin{align}
&\,\lim_{x\to0}
\frac{x\ln(1+x)}{1-\cos x}\\[2mm]
=&\,\lim_{x\to0}
\frac{x}{1-\cos x}
\cdot\ln(1+x)
&&\colorbox{Lavender}{先拉開}\\[2mm]
=&\,\lim_{x\to0}
\frac{x^2}{1-\cos x}
\cdot\frac{\ln(1+x)}{x}
&&\colorbox{Lavender}{再湊}\\[2mm]
=&\,2\cdot1=2
\end{align}

延伸題 4

\begin{align*}
\lim_{x\to0}
\frac{\ln(\cos x)}{x^2}
\end{align*}

乍看分子的 $\ln(\cos x)$ 並不滿足我們比較熟悉的
$\ln(1+\colorbox{SkyBlue}{無窮小量})$ 這種形式,
但我們可以自己湊:

\begin{align}
\ln(\cos x)
=\ln\big(1+(\cos x-1)\big)
\end{align}

這樣就有方向了,於是

\begin{align}
&\,\lim_{x\to0}
\frac{\ln(\cos x)}{x^2}\\[3mm]
=&\,\lim_{x\to0}
\frac{\ln\big(1+(\cos x-1)\big)}{\cos x-1}
\cdot\frac{\cos x-1}{x^2}\\[3mm]
=&\,1\cdot(-\frac{1}{2})
=-\frac{1}{2}
\end{align}

延伸題 5

\begin{align*}
\lim_{x\to0}
\big(\cos x\big)^{\frac{1}{\ln(1+x^2)}}
\end{align*}

\begin{align}
&\,\lim_{x\to0}
\big(\cos x\big)^{\frac{1}{\ln(1+x^2)}}\\[3mm]
=&\,\lim_{x\to0}\big(1+
(\cos x-1)\big)^{\frac{1}{\ln(1+x^2)}}\\[3mm]
=&\,\lim_{x\to0}
\bigg[\big(1+
(\cos x-1)\big)^{\frac{1}{\cos x-1}
}\bigg]^{\frac{\cos x-1}{\ln(1+x^2)}}\\[3mm]
=&\,\lim_{x\to0}
\bigg[\big(1+
(\cos x-1)\big)^{\frac{1}{\cos x-1}
}\bigg]^{\frac{\cos x-1}{x^2}
\cdot\frac{x^2}{\ln(1+x^2)}}\\[3mm]
=&\,e^{-\frac{1}{2}\cdot1}=e^{-\frac{1}{2}}
\end{align}

給本文評個分

0 / 5

Your page rank:

Similar Posts

發佈留言

發佈留言必須填寫的電子郵件地址不會公開。 必填欄位標示為 *